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Project Objectives

The primary objective of the project is to build and
test a downhole fracture diagnostic tool that can be
used to estimate the orientation and length of the
‘propped’ fracture and to map the distribution of
proppant in the fracture.

Specifically, our objectives are to:
– Develop a forward model for the proposed technology taking into account 

real geological and reservoir constraints.
– Test proppants in the laboratory for electrical and material properties for 

their suitability in deployment in the field.
– Design, build and field test a prptotype low frequency electromagnetic tool.
– Invert the field data to estimate the propped fracture geometry, and present 

a map showing the distribution of proppant in the fracture.
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Concept

• Transform a hydraulic fracture into a highly conductive plane using 
conductive proppants.

• One transmitter, two receiver set to measure electromagnetic response.

Transmitter

Receiver 1
Receiver 2

Fracture filled with 
electrically conductive 
proppant

Electromagnetic       
waves
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Forward Model
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Tx Rx1

Shale background

a

Tx-Rx distance

Rx2

Rx2-Rx1 spacing

Fracture

Borehole

Simulated Scenario

shale 3 mρ = Ω
3

eff 10 mρ −= Ω
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• Short-spacing measurement

• Long-spacing measurement
Center of the receivers

Tx Rx1 Rx2

=Rx2 1.5 mr
Rx1= 1.2 mr

Tx Rx1 Rx2

=Rx2 19.2 mr
Rx1= 18 mr

Simulated Scenario

3
Rx2 Rx1 Rx1 Rx2[ ( ) ( )( / ) ]uv uv uvH H H r rD = - -r r

u-component H field due to v-

directed magnetic dipole

• Primary and bucking coil configuration
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• Primary (formation) and secondary (fracture) magnetic fields 
computed for co-axial and co-planar scenarios

• Field notations:
– Magnetic field (fracture + formation):
– uv indicates:

• aa – co-axial measurement,  pp – co-planar measurement
– Voltage after cancellation [volts]:

• Secondary field increases with facture size and effective 
conductivity and decreases with Tx-Rx distance. 

form frac
v v v= +H H H

Simulated Scenario

Tx Rx1 Rx2

3 3
0 turn Rx2 Rx1 Rx1 Rx2ˆRe{ [ ( ) ( ) / ]}uv v vU j AN r rωµ∆ = − ⋅ −u H r H r
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VJÞ
VJ

• Scattered (secondary) electric field
V

V shale for
V

fracm (( )[ ])s s- + =E JE J

Model: Volume Electric Field Integral Equation 
(VEFIE)
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Þ

• Basis and Galerkin testing

VJ

VJ

3( )O NComputational cost: (direct method)
2( )O N (iterative method)( : 70 000 250 000):N

Model: Method-of-Moments (MoM)
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Model: Numerical Solution and Fast Solver

• Method of Moments

– Discretization of the integral equation

– Computational cost

• Adaptive integral method:

– Auxiliary 3-D regular grid

– A 4-step procedure to approximate MOM
matrix

– Translational invariance

– 3-D FFTs

– Computational cost

2
iter( )O N N

iter C C( ( log ))O N N N N+

1 1N N N N´ ´ ´=Z I V
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Computational Complexity

• AIM iterative solver performance (new)
– Problem: circular fracture (a=30m):
– Number of unknowns: ~1.9M  (dictated by higher conductivity)
– Storage: ~91GB   (~54.6TB  with MoM)
– 512 cores
– Matrix fill time: 2.2 min (19 hr. if serial)
– Solution per excitation average time: 8.3 sec. (1.18 hr. if serial)
– For 2x200 excitations: 0.9 hr. (for a single fracture)

• MoM iterative solver performance (presented last year)
– Problem: circular fracture (a=30m):
– Number of unknowns: ~189k
– Storage: ~546GB
– 512 cores
– Matrix fill time: 28 min (238 hr. if serial)
– Solution per excitation average time: 45 sec. (6 hr. if serial)
– For 2x200 excitations: 5 hr. (for a single fracture)

0.1 mρ = Ω

0.01 mρ = Ω
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Simulations Summary

• Simulations are required for evaluation of tool design as 
well as for forward model as part of an inverse solver

• Integral equation-based solvers obviate the need in 
modelling formation background, larger fractures can be 
analyzed 

• Adaptive Integral Method (AIM)-based fast iterative solver 
enable analysis of larger, more detailed fractures, with 
higher proppant conductivity 

• Removal of borehole has little effect on the results while 
enabling optimal performance of AIM (greater acceleration) 

• Fast run-time per excitation - corner stone of the inverse 
solver in progress
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Simulations Summary

• High conductivity contrasts cause ill conditioning – results 
are scaled with fracture conductivity in post processing

• Hence, results are obtained with “pessimistic” proppant 
resistivity values and scaled to match values extracted 
from lab-experiment

• Planned:
- Fast direct solver– (in progress) suitable for multiple 

forward solutions and high conductivity contrasts
- Inversion algorithm relying on a fast direct solution
- Advanced formulation and complex modeling for cased 

wells tools
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Proppant Resistivity Measurements
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Experimental Configuration

Conductive Proppant: Petroleum Coke
• A 4-point probe method was used to do the measurements in a core holder
• Alternating current (AC) was applied on the current-carrying electrodes,

while the voltage was measured on the voltage-sensing electrodes
• Confining pressure can be applied. Saturation fluid could be tuned

1’’

~

V

A

1.5’’
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Verification of the Experimental Method
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Verification of the Experimental Method

19

19.5

20

20.5

0.86

0.87

0.88

0.89

0.9

0.91

0 500 1000 1500 2000 2500 3000

Re
si

st
an

ce
 (o

hm
)

Re
si

st
iv

ity
 (

oh
m

.m
)

Confining Pressure (psi)

Resistivity/Resistance VS Confining Pressure

Resistivity Resistance

Confining pressure applied

Φ=24.2%

Sea Water (Rw=0.18 
ohm.m)

The setup works
properly when confining
pressure is applied,
although the contraction
of the sleeve has a
small effect on the
calculations.
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Resistivity measurements of petroleum coke with air 

Preliminary Results

Density: 1.14 g/cm3

Porosity: 43.9%
End point: 3.2x10-4

Density: 1.27 g/cm
3

Porosity: 37.6%
End point: 2.4x10

-4

mΩ⋅
mΩ⋅
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Resistivity measurements of petroleum coke in a fracture

Preliminary Results

1 mmfW =

The resistivity remains relatively steady around ,  i.e., an order of magnitude higher than that 
obtained for the cylindrical pack.

33 10  m−× Ω⋅
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Key Observations

• The electric resistivity of the proppant we plan to use, under confining 
stress, was measured to be in the range of 2 x 10-4      .

• This value is four orders of magnitude smaller than the resistivity of a 
typical shale. This is very important since it provides an excellent 
resistivity contrast with the shale.

• The initial packing density affects the resistivity at low stress but not 
at high stress.

• The resistivity is not very sensitive to the fluid saturation since the 
conductance is controlled by the conductivity of the solid grains.

mΩ⋅
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Towards a Parametric Inversion Algorithm
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• We already know from simulations of simple fracture geometries:
– The voltage detected           are proportional to fractures’ conductivity

– increases as the fracture area increases, until it reaches to a 
saturation point

– Coaxial measurements           are more sensitive to fracture’s 
conductivity, area, shape and position, while cross-polarized 
measurements (           …) are more sensitive to fractures’ angle

Yang, K., C. Torres-Verdin, and A.E. Yilmaz. 2015. IEEE Transactions, 53(8), 4605-4615.

Before Inversion

uvU∆
uvU∆

zzU∆
xzU∆

• In order to do inversion, we need to know:
– What information the tool offers corresponding to different fracture 

geometries

– What signals should be used for inversion in order to recognize different 
model parameters
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Towards more realistic fractures:
• Asymmetrical proppant distributions
• Complex fractures
• Curved fractures
• Lab measured proppant conductivity

Can the tool differentiate these fractures?

Before Inversion
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• The relative signal strength decreases as the propped area reduces proportionality
of the secondary fields to fracture size

Example - Proppant Distribution

Effect of proppant distribution (coaxial measurements)

• The curves reach their peak values when the center of the two receivers is roughly at
zero ability to detect fracture’s location
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• The separation of the curves for the long-spacing configuration is more pronounced.
The long-spacing detector is more sensitive to longer fractures.
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Short spacing, cross-polarized Long spacing, cross-polarized

• The cross-polarized measurement is less sensitive to the propped fracture’s area

• The more symmetrical fractures induce significantly lower voltage levels at the
receiver compared to that of the single sided distribution (less symmetrical induced
stronger signals)

• This configuration is more sensitive to the fracture’s asymmetry, and it provides
complementary information that can improve shape classification of the propped
fracture

Example - Proppant Distribution

Effect of proppant distribution (cross-polarized measurements)
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Example - Proppant Distribution

Key conclusions:

• the EM logging technique enables the differentiation between
different spatial distributions of proppant.

• To detect spatial asymmetry in fractures, a combination of co-
axial and cross-polarized measurements should be used.

• While co-axial measurements provide information on fracture
area, distinguishing asymmetrical fractures from symmetrical
ones is possible based on cross-polarized measurements.

• Long-spacing configuration is preferred to distinguish between
various spatial distributions of proppant in large-size fractures.



DOE Project Review, Sharma, University of Texas at Austin8/24/2016 36

Example - Complexity of Fractures

• Use multiple planar elliptical fractures of
a 5mm total width and a 1 cm separation
to approximate the complex fracture.

• No significant difference is observed
between the various cases. The tool’s
response depends only on the propped
fracture volume, and not on its
complexity.

Therefore, it is sufficient to model a thin
complex fracture as a single thin bulk
volume of a constant effective thickness

Complex fractures VS planar fractures

Short spacing, coaxial



DOE Project Review, Sharma, University of Texas at Austin8/24/2016 37

Example - Curved Fractures

Curved fracture VS planar fracture
Major radius 10m, minor radius 3m
Two wings are bent 30 º

• Measurement with long-spacing
configuration shows some differences in
both coaxial and coplanar
measurements.

• These differences are more likely
effects of differences in area
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Parametric Inversion Approach
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Goal: Minimize the objective function w.r.t all model parameters !

z : position (m)
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Optimization Algorithm - GSS

Golden section search (GSS)

• To find the minimum of in the interval

1. Let be the initial interval

2. Set

3. Set

4. If , ; else

5. If (stopping criteria met) return; else go to Step 3

( )f x [ , ]lo hix x

[ , ]lo hix x

1 (1 )lo hix cx c x= + −

2 (1 ) lo hix c x cx= − +

( ) ( )1 2f x f x< 1 2 2, , hix x x x→ 1 2 1, ,lox x x x→
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Example for Inversion
Starting from a simple case

True model                                                    Initial guess

r
a

b

Position: 0 m
Conductivity: 30 S/m
Orientation: 
Area: 
Aspect Ratio: 3.33

2π×10×3 m
0°

Position: 3 m
Conductivity: 100 S/m
Orientation: 
Area: 
Aspect Ratio: 1

2 2π×7  m
0°

x

y

z
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A
∂

=
∂

The Order of Searching

α z σ are independent model parameters

A λ are coupled model parameters

Start searching using short-spacing configuration 
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Searching for Angle
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• Cross-polarized results
• Searching interval: [-30, 30]
• Accuracy: 2
• Number of forward Simulations: 7
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Searching for Location

• Searching interval: [-4, 4]
• Accuracy: 0.1
• Number of forward Simulations: 8
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Searching for Conductivity
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• Searching interval: [10, 100]
• Accuracy: 10
• Number of forward Simulations: 4-3 -2 -1 0 1 2 30
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• Inversion results (stops after one iteration)

(True)   

Reason: data from short-spacing configuration doesn’t provide 
information about proppant far from wellbore.

What if we switch to data from long-spacing configuration?

Searching for Area and Aspect Ratio

A λ are coupled model parameters !

255 mA = 1λ =
294 mA = 3.3λ =
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Searching for Area
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• Searching interval: [20, 200]
• Accuracy: 5
• Number of forward Simulations: 8
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Searching for Aspect Ratio

• Searching interval: [1, 8]
• Accuracy: 1
• Number of forward Simulations: 4
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• Searching interval: [50, 110]
• Accuracy: 2
• Number of forward Simulations: 7

Searching for Area (2nd)
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• Searching interval: [1, 4]
• Accuracy: 0.5
• Number of forward Simulations: 3

Searching for Aspect Ratio (2nd)
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Inversion Summary

• Total number of forward simulations is 41
• Total computational time needed ~50 min (256 processors)
• Data should be chosen based on the rough estimation of fracture size 

especially for inversion of fracture size and aspect ratio 

Future plans for inversion:
• Automation of searching 
• Adding noise to synthesized data
• Using real data (recorded by experiments)

True
Position: 0 m
Conductivity: 30 S/m
Orientation: 
Area: 
Aspect Ratio: 3.33

294 m
0°

Inversion
Position: 0 m
Conductivity: 30 S/m
Orientation: 
Area: 
Aspect Ratio: 2.5

284 m
0°
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Shallow Earth Experiment for 
Prototype Tool
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Prototype Tool: Shallow Earth Experiment

• Smaller scale experiment in a controlled environment (not 
field deployable)

• Necessary for:
– Refining/Improving design towards a field deployable tool

– Verifying measurement methodology

– Recording realistic data to be used by inverse algorithms in 
development
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Test Site Tool Specifications

Constraints:
- Wellbore Size Limitation: diameter of the coil is restricted to 4”

- Thickness of Wire used in transmitter and receiver

- Eccentricity: misalignment of receiver axis with respect to 

transmitter axis can result in errors due to different signal level in 

different configurations

- Target Frequency: Larger fractures require lower frequencies.

Requirements:
- Magnetic dipole moment: Preferably at least N*S*I = 150 Am2

- Three receivers: short (6’), intermediate (20’), long Tx-Rx spacing (60’)
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Proposed Experiment

Tx Rx1

Formation

Rx2

Conductive 
Target

Borehole

Air

𝑎𝑎 ≈ 1𝑚𝑚

Tx-Rx 6’

1’
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Proposed Experiment

Not necessarily large size low conductivity target, induction number can be 
kept constant for fracture

Detectable signal level is ~10 μV
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𝜌𝜌𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 10−7 Ωm
𝜌𝜌𝑏𝑏𝑡𝑡𝑏𝑏𝑏𝑏𝑡𝑡𝑡𝑡𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 3 Ωm

𝑁𝑁 = 60
𝐴𝐴 = 𝜋𝜋 � 0.06𝑅 m𝑅

𝛿𝛿 = 𝜎𝜎𝜎𝜎𝜎𝜎𝑙𝑙𝑅

𝜎𝜎: conductivity of target
𝜎𝜎: electric permeability
𝜎𝜎: angular frequency
𝑙𝑙: length of target
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Induction Coil Shallow Earth Test
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Field Test Facility:
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Transmitter and Receiver

Mono Axis Transmitter CoilTri Axial Receiver Coils
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Modified Drill Dog Surface System

Key components:
• Electronics for driving the transmitter
• Novel electronics and software for high 

resolution signal processing 
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Conclusion

• A new numerically efficient simulator was built to solve 
Maxwell’s equations in 3-D.

• Simulations were conducted to show that induction 
measurements can be used to detect electrically 
conductive proppant in fractures.

• For these highly conductive targets, measurements are 
expected to be sensitive to all target parameters, i.e. 
fracture location, propped fracture area, length and 
orientation.

• A Field Deployable Prototype Tool is being built.

• A shallow earth experiment is being planned to test the
prototype tool.
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Thank DOE for funding 
the project

DE-FE0024271
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